Otto Luening and Vladimir Ussachevsky In America the laboratories for electronic sound took a different path of development and first emerged out of the Universities and the private research facility of Bell Labs. It was a group of composers at Columbia and Princeton who had banded together to build the Columbia-Princeton Electronic Music Center (CPEMC), the oldest dedicated place for making electronic music in the United States. Otto Luening, Vladimir Ussachevsky, Milton Babbit and Roger Sessions all had their fingers on the switches in creating the studio. Otto Luening was born in 1900 in Milwaukee, Wisconsin, to parents who had emigrated from Germany. His father was a conductor and composer and his mother a singer, though not in a professional capacity. His family moved back to Europe when he was twelve, and he ended up studying music in Munich. At age seventeen he went to Switzerland and it was at the Zurich Conservatory where he came into contact with futurist composer Ferruccio Busoni. Busoni was himself a devotee of Bernard Ziehn and his “enharmonic law.” This law stated that “every chord tone may become the fundamental.” Luening picked this up and was able to put it under his belt. Luening eventually went back to America and worked at a slew of different colleges, and began to advocate on behalf of the American avant-garde. This led him to assisting Henry Cowell with the publication of the quarterly New Music. He also took over from Cowell New Music Quarterly Recordings which put out seminal recordings from those inside the new music scene. It was 1949 when he went to Columbia where for a position on the staff in the philosophy department and it was there he met Vladimir Ussachevsky. Ussachevsky had been born in Manchuria in 1911 to Russian parents. In his early years he was exposed to the music of the Russian Orthodox Church and a variety of piano music, as well as the sounds from the land where he was born. He gravitated to the piano and gained experience as a player in restaurants and as an improviser providing the live soundtrack to silent films. In 1930 he emigrated to the United States, went to various schools, served in the army during WWII, and eventually ended up under the wing of Otto Luening as a postdoctoral student at Columbia University, where he in turn ended up becoming a professor. In 1951 Ussachevsky convinced the music department to buy a professional Ampex tape recorder. When it arrived it sat in its box for a time, and he was apprehensive about opening it up and putting it to use. “A tape-recorder was, after all, a device to reproduce music, and not to assist in creating it,” he later said in recollection of the experience. When he finally did start to play with the tape recorder, the experiments began as he figured out what it was capable of doing, first using it to transpose piano pitches. Peter Mauzey was an electrical engineering student who worked at the university radio station WKCR, and he and Ussachevsky got to talking one day. Mauzey was able to give some technical pointers for using the tape recorder. In particular he showed him how to create feedback by making a tape loop that ran over two playback heads, and helped him get it set up. The possibilities inherent in tape opened up a door for Ussachevsky, and he became enamored of the medium, well before he’d ever heard of what Pierre Schaeffer and what his crew were doing in France, or what Stockhausen and company were doing in Germany. Some of these first pieces that Ussachevsky created were presented at a Composers Forum concert in the McMillan Theater on May 9, 1952. The following summer Ussachevsky presented some of his tape music at another composers conference in Bennington, Vermont. He was joined by Luening in these efforts. Luening was a flute player, and they used tape to transpose his playing into pitches impossible for an unaided human, and added further effects such as echo and reverb. After these demonstrations Luening got busy working with the tape machine himself and started composing a series of new works at Henry Cowell’s cottage in Woodstock, New York, where he had brought up the tape recorders, microphones, and a couple of Mauzey’s devices. These included his Fantasy in Space, Low Speed, and Invention in Twelve Tones. Luening also recorded parts for Ussachevsky to use in his tape composition, Sonic Contours. In November of 1952 Leopold Stokowski premiered these pieces, along with ones by Ussachevsky, in a concert at the Museum of Modern Art, placing them squarely in the experimental tradition and helping the tape techniques to be seen as a new medium for music composition. Thereafter, the rudimentary equipment that was the seed material from which the CPEMC would grow, moved around from place to place. Sometimes it was in New York City, at other times Bennington or at the MacDowell Colony in New Hampshire. There was no specific space and home for the equipment. The Louisville Orchestra wanted to get in on the new music game and commissioned Luening to write a piece for them to play. He agreed and brought Ussachevsky along to collaborate with him on the work which became the first composition for tape-recorder and orchestra. To fully realize it they needed additional equipment: two more tape-recorders and a filter, none of which were cheap in the 1950s, so they secured funding through the Rockefeller Foundation. After their work was done in Louisville all of the gear they had so far acquired was assembled in Ussachevsky’s apartment where it remained for three years. It was at this time in 1955 they sought a permanent home for the studio, and sought the help of Grayson Kirk, president of Columbia to secure a dedicated space at the university. He was able to help and put them in a small two-story house that had once been part of the Bloomingdale Asylum for the Insane and was slated for demolition. Here they produced works for an Orson Welles production of King Lear, and the compositions Metamorphoses and Piece for Tape Recorder. These efforts paid off when they garnered the enthusiasm of historian and professor Jacques Barzun who championed their efforts and gained further support. With additional aid from Kirk, Luening and Ussachevsky eventually were given a stable home for their studio inside the McMillin Theatre. Having heard about what was going on in the studios of Paris and Germany the pair wanted to check them out in person, see what they could learn and possibly put to use in their own fledgling studio. They were able to do this on the Rockefeller Foundation’s dime. When they came back, they would soon be introduced to a machine, who in its second iteration, would go by the name of Victor. The Microphonics of Harry F. Olson One of Victor’s fathers was a man named Harry Olson (1901-1982), a native of Iowa who had the knack. He became interested in electronics and all things technical at an early age. He was encouraged by his parents who provided the materials necessary to build a small shop and lab. For a young boy he made remarkable progress exploring where his inclinations led him. In grade school he built and flew model airplanes at a time when aviation itself was still getting off the ground. When he got into high school he built a steam engine and a wood-fired boiler whose power he used to drive a DC generator he had repurposed from automobile parts. His next adventure was to tackle ham radio. He constructed his own station, demonstrated his skill in morse code and station operation, and obtained his amateur license. All of this curiosity, hands on experience, and diligence served him well when he went on to pick up a bachelors in electrical engineering. He next picked up a Masters with a thesis on acoustic wave filters, and topped it all off with a Ph.D in physics, all from his home state University of Iowa. While working on his degrees Olson had come under the tutelage of Dean Carl E. Seashore, a psychologist who specialized in the fields of speech and stuttering, audiology, music, and aesthetics. Seashore was interested in how different people perceived the various dimensions of music and how ability differed between students. In 1919 he developed the Seashore Test of Music Ability which set out to measure how well a person could discriminate between timbre, rhythm, tempo, loudness and pitch. A related interest was in how people judged visual artwork, and this led him to work with Dr. Norma Charles Meier to develop another test on art judgment. All of this work led Seashore to eventually receive financial backing from Bell Laboratories. Another one of Olson’s mentors was the head of the physics department G. W. Stewart, under who he did his work on acoustic wave filters. Between Seashore and Stewart’s influence, Olson developed a keen interest in the areas of acoustics, sound reproduction, and music. With his advanced degree, and long history of experimentation in tow, Olson headed to the Radio Corporation of America (RCA) where he became a part of the research department in 1928. After putting in some years in various capacities, he was put in charge of the Acoustical Research Laboratory in 1934. Eight years later in 1942 the lab was moved from Camden to Princeton, New Jersey. The facilities at the lab included an anechoic chamber that was at the time, the largest in the world. A reverberation chamber and ideal listening room were also available to him. It was in these settings that Olson went on to develop a number of different types and styles of microphone. He developed microphones for use in radio broadcast, for motion picture use, directional microphones, and noise-cancelling microphones. Alongside the mics, he created new designs for loudspeakers. During WWII Olson was put to work on a number of military projects. He specialized in the area of underwater sound and antisubmarine warfare, but after the war he got back to his main focus of sound reproduction. Taking a cue from Seashore, he set out to determine what a listeners preferred bandwidth of sound actually was when sound had been recorded and reproduced. To figure this out he designed an experiment where he put an orchestra behind a screen fitted with a low-pass acoustic filter that cut off the high-frequency range above 5000 Hz. This filter could be opened or closed, the bandwidth full or restricted. Audiences who listened, not knowing when the concealed filter was opened or closed had a much stronger leaning towards the open, all bandwidth listening experience. They did not like the sound when the filter was activated. For the next phase of his experiment Olson switched out the orchestra, whom the audience couldn’t see anyway, with a sound-reproduction system with loudspeakers located in the position of the orchestra. They still preferred the full-bandwidth sound, but only when it was free of distortion. When small amounts of non-linear distortion were introduced, they preferred the restricted bandwidth. These efforts showed the amount of extreme care that needed to go into developing high-fidelity audio systems. In the 1950s Olson stayed extremely busy working on many projects for RCA. One included the development of magnetic tape capable of recording and transmitting color television for broadcast and playback. This led to a collaboration between RCA and the 3M company, reaching success in their aim in 1956. The RCA Mark I Synthesizer Claude Shannon’s 1948 paper “A Mathematical Theory of Communications,” was putting the idea of information theory into the heads of everyone involved in the business of telephone and radio. RCA had put large sums of money into their recorded and broadcast music, and the company was quick to grasp the importance and implications of Shannon’s work. In his own work at the company, Olson was a frequent collaborator with fellow senior engineer Herbert E. Belar (1901-1997). They worked together on theoretical papers and on practical projects. On May 11, 1950 they issued their first internal research report on information theory, "Preliminary Investigation of Modern Communication Theories Applied to Records and Music." Their idea was to consider music as math. This in itself was not new, and can indeed be traced back to the Pythagorean tradition of music. To this ancient pedigree they added the contemporary twist in correlating music mathematically as information. They realized, that with the right tools, they could be able to generate music from math itself, instead of from traditional instruments. On February 26, 1952 they demonstrated their first experiment towards this goal to David Sarnoff, head of RCA, and others in the upper echelons of the company. They made the machine they built perform the songs “Home Sweet Home” and “Blue Skies”. The officials gave them the green light and this led to further work and the development of the RCA Mark I Synthesizer. The RCA Mark I was in part a computer, as it had simple programmable controls, yet the part of it that generated sound was completely analog. The Mark I had a large array of twelve oscillator circuits, one for each of the basic twelve tones of the muscial scale. These were able to be modified by the synths other circuits to create an astonishing variety of timbre and sound. The RCA Mark I was not a machine that could make automatic music. It had to be completely programmed by a composer. The flexibility of the machine and the range of possibilities gave composers a new kind of freedom, a new kind of autocracy, total compositional control. This had long been the dream of those who had been bent towards serialism. The programming aspect of the RCA Mark I hearkened back to the player pianos that had first appeared in the 19th century, and used a roll of punched tape to instruct the machine what to do. Olson and Belar had been meticulous in all of the aspects that could be programmed with their creation. These included pitch, timbre, amplitude, envelope, vibrato, and portamento. It even included controls for frequency filtering and reverb. All of this could be output to two channels and played on loudspeakers, or sent to a disc lathe where the resulting music could be cut straight to wax. It was introduced to the public by Sarnoff on January 31, 1955. The timing was great as far as Ussachevsky and Luening were concerned, as they first heard about it after they had returned from a trip to Europe where they had visited the GRM, WDR, and some other emerging electronic music studios. The trip had them eager to establish their own studio to work electronic music their own way. When they met Schaeffer he had been eager to impose his own aesthetic values on the pair, and when they met Stockhausen, he remained secretive of his working methods and aloof about their presence. Despite this, they were excited about getting to work on their own, even if exhausted from the rigors of travel. They made an appointment with the folks at RCA to have a demonstration of the Mark I Synthesizer. The RCA Mark I far surpassed what Luening and Ussachevsky had witnessed in France, Germany and the other countries they visited. With its twelve separate audio frequency sources the synth was a complete and complex unit, and while programming it could be laborious, it was a different kind of labor than the kind of heavy tape manipulation they had been doing in their studio, and the accustomed ways of working at the other studios they got to see in operation. The pair soon found another ally in Milton Babbit, who was then at Princeton University. He too had a keen interest in the synth, and the three of them began to collaborate together and share time on the machine, which they had to request from RCA. For three years the trio made frequent trips to Sarnoff Laboratories in Princeton where they worked on new music. .:. .:. .:.
Read the rest of the Radiophonic Laboratory: Telecommunications, Electronic Music, and the Voice of the Ether. RE/SOURCES: Holmes, Thom. Electronic and Experimental Music. Sixth Edition. Music of the 20th Century Avant-Garde: A Biocritical Sourcebook https://ubu.com/sound/ussachevsky.html Columbia-Princeton Electronic Music Center 10th Anniversary, New World Records, Liner Notes, NWCRL268 , Original release date: 1971-01-01 https://120years.net/wordpress/the-rca-synthesiser-i-iiharry-olsen-hebert-belarusa1952/ https://cmc.music.columbia.edu/about https://betweentheledgerlines.wordpress.com/2013/06/08/milton-babbitt-synthesized-music-pioneer/ http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/olson-harry.pdf http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/seashore-carl.pdf https://snaccooperative.org/ark:/99166/w6737t86 https://happymag.tv/grateful-dead-wall-of-sound/ https://ubu.com/sound/babbitt.html https://www.youtube.com/watch?v=c9WvSCrOLY4 https://www.youtube.com/watch?v=6BfQtAAatq4 Babbitt, Milton. Words About Music. University of Wisconsin Press. 1987 https://en.wikipedia.org/wiki/Combinatoriality http://musicweb-international.com/classRev/2002/Mar02/Hauer.htm http://www.bruceduffie.com/babbitt.html http://cec.sonus.ca/econtact/13_4/palov_bode_biography.html http://cec.sonus.ca/econtact/13_4/bode_synthesizer.html http://esteyorganmuseum.org/
0 Comments
Leave a Reply. |
Justin Patrick MooreAuthor of The Radio Phonics Laboratory: Telecommunications, Speech Synthesis, and the Birth of Electronic Music. Archives
August 2024
Categories
All
|