[Read Part I] Milton Babbit: The Musical Mathematician Though Milton Babbitt was late to join the party started by Luening and Ussachevsky, his influence was deep. Born in 1916 in Philadelphia to a father who was a mathematician, he became one of the leading proponents of total serialism. He had started playing music as a young child, first violin and then piano, and later clarinet and saxophone. As a teen he was devoted to jazz and other popular forms of music, which he started to write before he was even a teenager. One summer on a trip to Philadelphia with his mother to visit her family, he met his uncle who was a pianist studying music at Curtis. His uncle played him one of Schoenberg’s piano compositions and the young mans mind was blown. Babbitt continued to live and breathe music, but by the time he graduated high school he felt discouraged from pursuing it as his calling, thinking there would be no way to make a living as a musician or composer. He also felt torn between his love of writing popular song and the desire to write serious music that came to him from his initial encounter with Schoenberg. He did not think the two pursuits could co-exist. Unable or unwilling to decide he went in to college specializing in math. After two years of this his father helped convince him to do what he loved, and go to school for music. At New York University he became further enamored with the work of Schoenberg, who became his absolute hero, and the Second Viennese School in general. In this time period he also got to know Edgar Varese who lived in a nearby apartment building. Following his degree at NYU at the age of nineteen, he started studying privately with composer Roger Sessions at Princeton University. Sessions had started off as a neoclassicist, but through his friendship with Schoenberg did explore twelve tone techniques, but just as another tool he could use and modify to suit his own ends. From Sessions he learned the technique of Schenkerian analysis, a method which uses harmony, counterpoint and tonality to find a broader sense and a deeper understanding of a piece of music. One of the other methods Sessions used to teach his students was to have them choose a piece, and then write a piece that was in a different style, but used all the same structural building blocks. Sessions got a job from the University of Princeton to form a graduate program in music, and it was through his teacher, that Babbitt eventually got his Masters from the institution, and in 1938 joined the faculty. During the war years he got pressed into service as a mathematician doing classified work and divided his time between Washington D.C., and back at Princeton teaching math to those who would need for doing work such being as radar technicians. During this time he took a break from composing, but music never left his mind, and he started focusing on doing musical thought experiments, with a focus on aspects of rhythm. It was during this time period when he thought deeply on music that he thoroughly internalized Schoenbergs system. After the war was over he went back to his hometown of Jackson and wrote a systematic study of the Schoenberg system, “The Function of Set Structure in the Twelve Tone System.” He submitted the completed work to Princeton as his doctoral thesis. Princeton didn’t give out doctorals in music, only in musicology, and his complex thesis wasn’t accepted until eight years after his retirement from the school in 1992. His thesis and his other extensive writings on music theory expanded upon Schoenberg’s methods and formalized the twelve tone, “dodecaphonic”, system. The basic serialist approach was take the twelve notes of the western scale and put them into an order called a series, hence the name of the style. It was called a tone row as well. Babbitt saw that the series could be used to order not only the pitch, but dynamics, timbre, duration and other elements. This led him to pioneering “total serialism” which was later taken up in Europe such as Pierre Boulez and Olivier Messiaen, among others. Babbitt treated music as field for specialist research and wasn’t very concerned with what the average listener thought of his compositions. This had its pluses and minuses. On the plus side it allowed him to explore his mathematical and musical creativity in an open-ended way and see where it took him, without worrying about having to please an audience. On the minus side, not keeping his listeners in mind, and his ivory tower mindset, kept him from reaching people beyond the most serious devotees of abstract art music. This tendency was an interesting counterpoint from his years as teenager when he was an avid writer of pop songs and played in every jazz ensemble he could. Babbitt had thought of Schoenberg’s work as being “hermetically sealed music by a hermetically sealed man.” He followed suit in his own career. In this respect Babbitt can be considered as a true Castalian intellectual, and Glass Bead Game player. Within the Second Viennese School there was an idea, a thread taken from both 19th century romanticism and adapted from the philosophy of Arthur Schopenhauer, that music provides access to spiritual truth. Influenced by this milieu Babbitt’s own music can be read and heard as connecting the players and listeners to a platonic realm of pure number. Modernist art had already moved into areas that many people did not care about. And while Babbitt was under no illusion that he ever saw his work being widely celebrated or popular, as an employee of the university, he had to make the case that music was in itself a scientific discipline. Music could be explored with the rigors of science, and that it could be made using formal mathematical structures. Performances of this kind of new music was aimed at other researchers in the field, not at a public who would not understand what they were listening to without education. Babbitt’s approach rejected a common practice, in favor of what would become the new common practice: many different ways of investigating, playing, working with and composing music that go off in different directions. During WWII Babbitt had met John Van Neumann at the Institute for Advanced Studies. His association with Neumann caused Babbitt to realize that the time wasn’t far off when humans would be using computers to assist them with their compositional work. Unlike some of the other composers who became interested in electronic music, Babbitt wasn’t interested in new timbres. He thought the novelty of them was quick to wear off. He was interested in how electronic technology might enhance human capability with regards to rhythms. Victor In 1957 Luening and Ussachevsky wrote up a long report for the Rockefeller Foundation of all that they had learned and gathered so far as pioneers in the field. They included in the report another idea: the creation of the Columbia-Princeton Electronic Music Center. There was no place like it within the United States. In a spirit of synergy the Mark I was given a new home at the CPEMC by RCA. This made it easier for Babbitt, Luening, Ussachevsky and the others to work with the machine. It would however soon have a younger, more capable brother nicknamed Victor, the RCA Mark II, built with additional specifications as requested by Ussachevsky and Babbitt. There were a number of improvements that came with Victor. The number of oscillators, had been doubled for starters. Since tape was the main medium of the new music, it also made sense that Victor should be able to output to tape instead of the lathe discs. Babbitt was able to convince the engineers to fit it out with multi-track tape recording on four tracks. Victor also received a second tape punch input, a new bank of vacuum tube oscillators, noise generating capabilities, additional effect processes, and a range of other controls. Conlon Nancarrow, who was also interested in rhythm as an aspect of his composition, bypassed the issue of getting players up to speed with complex and fast rhythms by writing works for player-piano, punching the compositions literally on the roll. Nancarrow had also studied under Roger Sessions, and he and Babbitt knew each other in the 1930s. Though Nancarrow worked mostly in isolation during the 1940s and 1950s in Mexico City, only later gaining critical recognition in the 1970s and onwards, it is almost certain that Babbitt would have at least been tangentially aware of his work composing on punched player piano rolls. Nancarrow did use player pianos that he had altered slightly to increase their dynamic range, but they still had the all the acoustic limitations of the instrument. Babbitt, on the other hand, found himself with a unique instrument capable of realizing his vision for a complex, maximalist twelve-tone music that was made available to him through the complex input of the punched paper reader on the RCA Mark II and it’s ability to do multitrack recording. This gave him the complete compositional control he had long sought after. For Babbitt, it wasn’t so much the new timbres that could be created with the synth that interested him as much as being able to execute a score exactly in all parameters. His Composition for Synthesizer (1961-1963) became a showcase piece, not only for Babbitt, but for Victor as well. His masterpiece Philomel (1963-1964) saw the material realized on the synth accompanied by soprano singer Bethany Beardslee and subsequently became his most famous work. In 1964 he also created Composition for Synthesizer. All of these are unique in the respect that none of them featured the added effects that many of the other composers using the CPEMC availed themselves of; these were outside the gambit of his vision. Phonemena for voice and synthesizer from 1975 is a work whose text is made up entirely of phonemes. Here he explores a central preoccupation of electronic music, the nature of speech. It features twenty-four consonants and twelve vowel sounds. As ever with Babbitt, these are sung in a number of different combinations, with musical explorations focusing on pitch and dynamics. A teletype keyboard was attached directly to the long wall of electronics that made up the synth. It was here the composer programmed her or his inventions by punching the tape onto a roll of perforated paper that was taken into Victor and made into music. The code for Victor was binary and controlled settings for frequency, octave, envelope, volume and timbre in the two channels. A worksheet had been devised that transposed musical notation to code. In a sense, creating this kind of music was akin to working in encryption, or playing a glass bead game where on kind of knowledge or form of art, was connected to another via punches in a matrix grid. Wired for Wireless Babbitt’s works were just a few of the many distilled from the CPEMC. Not all were as obsessed with complete compositional control as Babbitt, and utilized the full suite of processes available at the studio, from the effects units to create their works, and their works were plenti-ful. The CPEMC released more recorded electronic music out into the world than from anywhere else in North America. During the first few years of its operation, from 1959 to 1961 the capabilities of studio were explored by Egyptian-American composer and ethnomusicologist Halim El-Dabh, who had been the first to remix recorded sounds using the effects then available to him at Middle East Radio in Cairo. He had come to the United States with his family on a Fulbright fellowship in 1948 and proceeded to study music under such composers as Ernst Krenek and Aaron Copland, among a number of others. In time he settled in Demarest, New Jersey. El-Dabh quickly became a fixture in the new music scene in New York, running in the same circles as Henry Cowell, Jon Cage, and Edgard Varèse. By 1955 El-Dabh had gotten acquainted with Luening and Ussachevsky. At this point his first composition for wire recorder was eleven years behind him, and he had kept up his experi-mentation in the meantime. Though he had been assimilated into the American new music milieu, he came from outside the scenes in both his adopted land the and European avantgarde. As he had with the Elements of Zaar, El-Dabh brought his love of folk music into the fold. His work at the CPEMC showcased his unique combinations that involved his extensive use of percussion and string sounds, singing and spoken word, alongside the electronics. He also availed himself of Victor and made extensive use of the synthesizer. In 1959 alone he produced eight works at CPEMC. These included his realization of Leiyla and the Poet, an electronic drama. El-Dabh had said of his process that it, "comes from interacting with the material. When you are open to ideas and thoughts the music will come to you." His less abstract, non-mathematical creations remain an enjoyable counterpoint to the cerebral enervations of his col-leagues. A few of the other pieces he composed while working the studio include Meditation in White Sound, Alcibiadis' Monologue to Socrates, Electronics and the World and Venice. El-Dabh influenced such musical luminaries as Frank Zappa and the West Coast Pop Art Experimental Band, his fellow CPEMC composer Alice Shields, and west-coast sound-text poet and KPFA broadcaster and music director Charles Amirkhanian. In 1960 Ussachevsky received a commission from a group of amateur radio enthusiasts, the De Forest Pioneers, to create a piece in tribute to their namesake. In the studio Vladimir composed something evocative of the early days of radio and titled it "Wireless Fantasy". He recorded morse code signals tapped out by early radio guru Ed G. Raser on an old spark generator in the W2ZL Historical Wireless Museum in Trenton, New Jersey. Among the signals used were: QST; DF the station ID of Manhattan Beach Radio, a well known early broadcaster with a range from Nova Scotia to the Caribbean; WA NY for the Waldorf-Astoria station that started transmitting in 1910; and DOC DF, De Forests own code nickname. The piece ends suitably with AR, for end of mes-sage, and GN for good night. Woven into the various wireless sounds used in this piece are strains of Wagner's Parsifal, treated with the studio equipment to sound as if it were a shortwave transmis-sion. In his first musical broadcast Lee De Forest had played a recording of Parsifal, then heard for the first time outside of Germany. From 1960 to 1961 Edgard Varese utilized the studio to create a new realization of the tape parts for his masterpiece Deserts. He was assisted in this task by Max Mathews from the nearby Bell Laboratories, and the Turkish-born Bulent Arel who came to the United States on a grant from the Rockefeller Foundation to work at CPEMC. Arel composed his Stereo Electronic Music No. 1 and 2 with the aid of the CPEMC facilities. Daria Semegen was a student of Arel’s who composed her work Electronic Composition No. 1 at the studio. There were numerous other composers, some visiting, others there as part of their formal education who came and went through the halls and walls of the CPEMC. Lucio Berio worked there, as did Mario Davidovsky, Charles Dodge, and Wendy Carlos just to name a few. Modulation in the Key of Bode
Engineer and instrument inventor Harold Bode made contributions to CPEMC just as he had at WDR. He had come to the United States in 1954, setting up camp in Brattleboro, Ver-mont where he worked in the lead development team at the Etsey Organ Corporation, eventually climbing up to the position of Vice President. In 1958 he set up his own company, the Bode Electronics Corporation, as a side project in addition to his work at Etsey. Meanwhile Peter Mauzey had become the first director of engineering at CPEMC. Mauzey was able to customize a lot of the equipment and set up the operations so it became a comfortable place for composers. When he wasn’t busy tweaking the systems in the studio, Mauzey taught as an adjunct professor at Columbia University, all while also doing working en-gineer work at Bell Labs in New Jersey. Robert Moog happened to be one of Mauzey’s students while at Columbia, under whom he continued to develop his considerable electrical chops, even while never setting foot in the studio his teacher had helped build. Bode left to join the Wurlitzer Organ Co. in Buffalo, New York when it hit rough waters and ran around 1960. It was while working for Wurlitzer that Bode realized the power the new transistor chips represented for making music. Bode got the idea that a modular instrument could be built, whose different components would then be connected together as needed. The instrument born from his idea was the Audio System Synthesiser. Using it, he could connect a number of different devices, or modules, in different ways to create or modify sounds. These included the basic electronic music components then in production: ring modulators, filters, re-verb generators and other effects. All of this could then be recorded to tape for further pro-cessing. Bode gave a demonstration of his instrument at the Audio Engineering Society in New York, in 1960. Robert Moog was there to take in the knowledge and the scene. He became in-spired by Bodes ideas and and this led to his own work in creating the Moog. In 1962 Bode started to collaborate with Vladimir Ussachevsky at the CPEMC. Working with Ussachevsky he developed ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. These became staples at the CPEMC and were produced under both the Bode Sound Co. and licensed to Moog for inclusion in his modular systems. All of these effects became widely used in elec-tronic music studios, and in popular music from those experimenting with the moog in the 1960s. In 1974 Bode retired, but kept on tinkering on his own. In 1977 he created the Bode Vo-coder, which he also licensed to Moog, and in 1981 invented his last instrument the Bode Bar-berpole Phaser. .:. .:. .:. Read part I. Read the rest of the Radiophonic Laboratory: Telecommunications, Electronic Music, and the Voice of the Ether. RE/SOURCES: Holmes, Thom. Electronic and Experimental Music. Sixth Edition. Music of the 20th Century Avant-Garde: A Biocritical Sourcebook https://ubu.com/sound/ussachevsky.html Columbia-Princeton Electronic Music Center 10th Anniversary, New World Records, Liner Notes, NWCRL268 , Original release date: 1971-01-01 https://120years.net/wordpress/the-rca-synthesiser-i-iiharry-olsen-hebert-belarusa1952/ https://cmc.music.columbia.edu/about https://betweentheledgerlines.wordpress.com/2013/06/08/milton-babbitt-synthesized-music-pioneer/ http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/olson-harry.pdf http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/seashore-carl.pdf https://snaccooperative.org/ark:/99166/w6737t86 https://happymag.tv/grateful-dead-wall-of-sound/ https://ubu.com/sound/babbitt.html https://www.youtube.com/watch?v=c9WvSCrOLY4 https://www.youtube.com/watch?v=6BfQtAAatq4 Babbitt, Milton. Words About Music. University of Wisconsin Press. 1987 https://en.wikipedia.org/wiki/Combinatoriality http://musicweb-international.com/classRev/2002/Mar02/Hauer.htm http://www.bruceduffie.com/babbitt.html http://cec.sonus.ca/econtact/13_4/palov_bode_biography.html http://cec.sonus.ca/econtact/13_4/bode_synthesizer.html http://esteyorganmuseum.org/
0 Comments
Leave a Reply. |
Justin Patrick MooreAuthor of The Radio Phonics Laboratory: Telecommunications, Speech Synthesis, and the Birth of Electronic Music. Archives
August 2024
Categories
All
|