As the musical computers at Bell Labs in New Jersey were winding down in the late 70s, people in the California homebrew microcomputer scene were just starting to get wound up. DIY computers had arrived and a group of electronic music experimentalists in the San Francisco Bay Area were writing programs, networking them together and seeing how they sounded in various configurations. The group was known as the League of Automatic Music Composers (LAMC), active between 1977 to 1983 before being reassembled into another musical configuration known as The Hub. LAMC can rightly be considered the first computer music group, and first network music group.
The League had its beginnings in the CCM during the time when Robert Ashley was the director. It was also the time when the first fruits of Silicon Valley were beginning to ripen and were able to be plucked off the shelf by hackers and hobbyists. At CCM these hackers and hobbyists were also experimental musicians. Because the CCM allowed for open access to its studio it drew a large crowd of people outside of strictly academic art music into its doors where they were all able to freely mix and mingle. Rock musicians met hackers, and hackers met free improvisers and jazz heads, who all met those studying the radical end of western classical music as it had evolved in the 20th century. One of the mottos of the CCM was “if you’re not weird, get out!” It became a home for an assortment of musically inclined misfits, a place where they could fit in. Part of this already strange and heady brew was the homebrew tradition, which was very active at the Center due in part to its proximity to new integrated circuits being produced in Silicon Valley, in part due to its history as the place where the Buchla Box had been invented, and its association with the original composers who had formed SFTMC. Many of those luminaries, such as David Tudor, came to lecture and give concerts at CCM. The students had taken to the idea that building and designing circuits was part and parcel of the compositional process. The schematic diagram was seen as directly related to the graphic scores that had been innovated by the likes of John Cage, Morton Feldman and Karlheinz Stockhausen. David Tudor and Gordon Mumma had already paved the way in their creation of electronic musical systems that once designed and built could be turned on to produce the music. These cybernetic systems were often autonomous and required little intervention from the composer as player after the system had been set up. Tudor had spent time at CCM as a composer in residence and his influence permeated the atmosphere there, particularly his idea that the job of the composer was to listen rather than to dogmatically determine every last note of a piece of music. This emphasis on listening is a theme that runs through contemporary musical practice and can be traced to this rich heritage left to us by Cage, Oliveros, and Tudor. In Tudor’s case he emphasized the setting up of autonomous, or automatic networks of electronics; systems that were made up of phase shifters, attenuators, amplifiers, and filters such as in his Untitled piece from 1972. The aesthetic beauty of such a piece lies in the enjoyment of listening deeply to the complex interactions of the system. This system music presents a mirror to other types of systems: human social systems, the diverse ecological systems of the natural world, complex electronic communication systems, and the way the human body is a system of organs, cells, tissues, nerves, and parts all moving together, sometimes in harmony, sometimes creating dissonant tones and clashing with noise.
By the mid-seventies the first commercial microcomputers had been made available for the average consumer. They were called micro at this time to differentiate them from their mainframe predecessors that took up entire rooms in the halls of industry and the academy. This availability meant that anyone who was willing to fork over the $250 bones one of these machines cost could have their own computer. Free from the oversight of how it was used by the folks who were in charge of the institutional mainframes, enthusiasts were able to dabble. These micro computers were integrated into the circuit of California’s music scene.
Jim Horton was an early adopter, and he was quick to get his hands on one of these computers. It was 1976 and the contraption was the KIM-1. This was a single board device and its name stood for how it worked: Keyboard Input Monitor. Jim’s love of KIM soon spread out like a virus around the community and many other people started saving up their dollars to get these machines. The KIM-1 itself consisted of just a single printed circuit board. All the components were on one side and it had a whopping memory of 1k RAM. The unit had a hexadecimal keypad used for programming. The programs themselves were saved to audiocassette. An add-on keyboard could be attached and up to 4000 characters displayed on a television or monitor. As more people bought the machines, they started to share the programs they had written for them, and helped each-other troubleshoot the persnickety machine, and so a community of devotees grew around the devices. The KIM-1 wasn’t Horton’s first experience working with new technology. As a musician he was trained as a flutist, but had also gotten in on the game of analog synthesis. He had gained a reputation for building very large modular patches that had the ability to self-modify. He would get his friends to bring along their synths and he would connect his synth to theirs building networks of synthesizers. After building a huge and complex patch he would let the system play itself in long eight hour concerts that lasted all night. These concerts were similar to the all night concerts Terry Riley gave and a precursor to the sleep concerts later given by electronic musician Robert Rich. Jim Horton was the quintessential starving artist and he did his work for the glory not the gold. He had saved his meager welfare checks, and instead of buying food, literally starved himself for a synthesizer. He sacrificed to acquire the equipment necessary for realizing his soundworld. Forgoing creature comforts for greater achievement, he was known for plugging straight in to whatever work was at hand, and just getting on with things. One of his bandmates, Tim Perkis, recalls that meeting Jim was a liberating experience. He said, “Horton would show up at a gig with his tangle of loose wires and electronic components in a dresser drawer he would temporarily press into service. With my head full of hesitations born of half-digested conventional wisdom about audio circuitry, it was mind-blowing to see someone just go directly to the heart of the matter, twisting bare wires together, connecting anything to anything, and doing the deeply conceptual musical work which drove him without waiting for the right equipment to appear. He lived in a poverty that never seemed like a limitation to him, and worked with whatever means he had at hand.” In 1977 it was Jim Horton who first proposed the idea of making a microcomputer network band. It happened in an organic way. There was already a group getting together on a regular basis to share the music they were making on their KIM computers. Some of this music was also made with analog circuits and other instruments. At one of these gatherings Horton shared his idea of banding together to create a “silicon orchestra”. He had already demonstrated that synthesizers could be networked together into self-generative, ever shifting systems of musical patches. It was a natural next step to network the computers and other circuits they were building into their own system and listen to the experimental results. Later in the year at Mills College Horton worked with Rich Gold, one of the founding members behind LAMC. The pair put on a concert where the two of them linked their KIMs together. For the performance Horton ran an algorithmic music program based on the harmonic theories of eighteenth century mathematician Leonhard Euler. Rich Gold had written an artificial language program and these two programs interacted with each other for the show. Jim also was working with other future band member John Bischoff at the time and one of the things they had figured out was a piece where tones from John’s KIM would make Jim’s KIM transpose its melodic activity according to a set key note. Then in 1978 John, Jim and Rich all joined together as a trio to give a performance at an artist space in Berkley. Next they were joined by composer David Behrman who had come to California to co-direct the CCM with Robert Ashley, his friend and fellow member of the Sonic Arts Union. Rich Gold and Jim Horton were studying with Behrman at CCM. It was around this time when Behrman recorded his landmark album On the Other Ocean. This album is equally at home in the related but differing milieus of New Music, Ambient, and Minimalism, and on comfortable footing displaying sustained harmonies between electronic and acoustic sounds that slowly dance and revolve around each other until the difference between them blurs. The two pieces on the album feature the KIM-1 microcomputer with flute and bassoon on the title piece, and cello and the KIM-1 on the flip side, Figure in a Clearing. In these pieces the KIM-1 “listens” to the live performers, and accompanies or marks points when particular pitches are played. When Behrman joined LAMC this principle became a recurring theme in their music.
Behrman talks of his time at Mills College, “Some of the students began bringing computers to the Mills Center for Contemporary Music; on the advice of a wise Bay Area artist, Jim Horton, Paul DeMarinis and I bought KIM-1 microcomputers. KIM-1 weighed about 10 ounces and cost around 200 dollars. Around that time I'd been building switching circuits that were placed between primitive pitch-sensors and homemade synthesizers consisting mostly of triangle-wave generators. The switching circuits took a long time to solder together and could only do one thing. It seemed that this new device called the microcomputer could simulate one of these switching networks for a while and then change, whenever you wanted, to some other one. It was fun connecting its port lines to homemade synthesizers, and also to sensors, and writing very simple software to link sensor activity with synthesizer sounds. There was something fascinating about the design of software, even though on the KIM-1 it had to be done in machine language, by pressing keys on a little hexadecimal pad. This was the dawn of 'interactivity' in California, the moment when Jobs and Wozniack were introducing the Apple computer. There was a Bay Area composers group of that era, the Microcomputer Network Band, which liked to do concerts in which the participants would wire together a group of computers on a table, turn them all on, and stand back and watch to see what would happen.”
In November of 1978, now a quartet, the League of Automatic Music Composer gave its first performance using the name. Two years later Rich Gold and David Behrman had left the group to work on other projects. That’s when Tim Perkis swooped in to fill the spots. Tim was interested in music made with alternate tuning systems from various parts of the globe, even playing in a local gamelan group. He was also a Just Intonation fanatic who happened to be skilled with electronics, having a graduate degree in video from California College of Arts and Crafts. If building your own homebrewed electronic instruments is a new kind of folk craft, than Perkis excelled at this craft work, programming his circuits to play in the various tuning systems he collected in his research.
Now in trio form, with a cadre of Bay area musicians and improvisers joining the festivities on occasion at various performances, they played together for four more years in this configuration. They had a habit of getting together on alternate Sundays to play at the Finnish Hall in Berkley, and people were welcome to come in and take in the scene.
Perkis writes, “Audience members could come and go as they wished, ask questions, or just sit and listen. This was a community event of sorts as other composers would show up and play or share electronic circuits they had designed and built. An interest in electronic instrument building of all kinds seemed to be ‘in the air.’ The Finnish Hall events made for quite a Berkeley scene as computer-generated sonic landscapes mixed with the sounds of folk dancing troupes rehearsing upstairs and the occasional Communist Party meeting in the back room of the venerable old building.” During their time the LAMC distilled the spirit of the Bay area and infused its essence into their playful work practice and the music that came out of their curious explorations. Part band and part collective, they blended the communal zeitgeist of the day, with the fermenting intellectual and cultural atmosphere at work in such staples as the Whole Earth Catalog that promoted the use of personal computers alongside solar cells and sprout growing kits as part of the wave of interest in self-sufficiency and appropriate technology prevalent during a decade when the realities of hard limits were entering people’s consciousness. The members of the League had taken mega doses of the do it yourself ethos with regards to technical innovations. Everything they used was homebrewed or built from kits and modular components. All of it was on the table and subject to being taken apart, tinkered with, put to use in experiments. Then they would put it all back together again to see how it worked in a variety of combinations. The League created networks of microcomputers and circuits with an ear towards making one large interactive musical instrument out of the member’s individual computers and components. One came from many. The members of the collective were all interested in computers and programming them to make music. They learned that when they networked their machines together and sent instructions to each other, the amassed circuits of silicon and solder were capable of eliciting what they called new “musical artificial intelligences.” The sound of the leagues music is like a noisy arcade that has been rewired and rerouted in an ad hoc fashion. Amidst the distortion, the random generated tones, and the disorienting arpeggios produced by the circuits and programs, something beautiful occasionally emerges, but the sounds are always interesting and stimulating to the intellect. It’s often messy and unpredictable, but what comes out of the apparent chaos has the feel of sentience and is full of life.
Without the same kind of tools being used by Max Matthews and Laurie Spiegel and others at the big institutions, it should come no surprise that the sounds the League conjured up had more in common with 8-Bit gaming soundtracks, albeit highly dosed and on a recombinant and aleatory West Coast trip, than with the kind of sounds the bigger mainframe computers were making. It was done by a group of individuals dedicated to the notion that computers and people could create their own independent networks, built at home from the circuit board up. Their music has as much in common with the lo-fi aesthetics of garage rock as it does with the pristine waveforms built from code at Bell Labs. The limitations in computer memory, the limits of space on the circuit board, and the haphazard way it all got connected to other components gave their music the flavor of strong home brewed hooch. The sounds get the job done, and in their miasmic chaos, what comes out of the mess of wires is sublime.
The LAMC embraced their role as musical bricoleurs. According to Perkis, “We felt our work was more akin to that of our mentors and friends building gamelans (Lou Harrison and Bill Colvig), mechanical or electro-mechanical musical instruments (Tom Nunn, Chris Brown), or incorporating hacked versions of electrical and new electronic musical toys into their work (Paul DeMarinis, Laetitia Sonami), than to the contemporary institutional computer music. There was always the sense that the music arose out of the material situation, out of idiosyncratic individual players and the anarchic, ad-hoc arrangements they made.” Theirs was a mechanical musical conversation that ranged from noisy arguments to anarchic harmonies.
Their music was also steeped in the traditions of free improvisation that had developed on the West Coast. When they set up their systems, at Finnish hall, or in the living room of a bandmate, they didn’t set about to practice a certain song or pre-composed piece of music, it was rather the ever evolving continual music of the patch in progress, the program in process, the new circuit being added to the mix, or the old circuit being mixed in a new way. Each member had a station of their own equipment, running their own programs, making their own sounds and contributing them to the spontaneous mix. The stations were set up in such a way that the microcomputers could send and receive information from each other, hence being a network band. The novel interactions of each new set up became the piece. It was composed, but it was spontaneous. With each new system set up the result was automatic.
So, as with David Tudor and Pauline Oliveros, the main activity of the musician was in listening. Making adjustments, tinkering with the system, the listening to what happened, after listening again and making new adjustments, tinkering some more and listening again in and endless cycle of discovery and surprise. When they noticed a set up that elicited sounds of beauty, or a sublime alien strangeness, they took notes so they could try to realize that same musical state again. It was true experimental music made in a laboratory they put together themselves. In 1983 all the tinkering and hauling gear was beginning to take a toll on Jim Horton. He had been suffering from rheumatoid arthritis already for some time, and in his way, endured the pain with stoic fortitude, pushing it to one side to continue living his Spartan artistic lifestyle. But it became too much. Eventually the human power supply running the operation had to be unplugged. The LAMC slowed down and then decided to disband. Yet the end of the LAMC wasn’t the end of what Jim and the others had started, but rather a new beginning. Tim Perkis and John Bischoff went on to try and bring a touch of order to the chaotic mess of wires, gadgets and connections that had become their musical practice. They envisioned building a standard interface they could more easily network their computers together with. This they achieved and became the seed for Perkis and Bischoff’s next project, The Hub.
.:. .:. .:.
Read the rest of the Radiophonic Laboratory: Telecommunications, Electronic Music, and the Voice of the Ether.
0 Comments
Leave a Reply. |
Justin Patrick MooreAuthor of The Radio Phonics Laboratory: Telecommunications, Speech Synthesis, and the Birth of Electronic Music. Archives
August 2024
Categories
All
|