As co-founder of the BBC Radiophonic Workshop –the unit created in 1958 that produced sound effects, incidental sounds and music for radio and television –Daphne Oram held a key place in the history of electronic music. Alongside F.C. Judd she was one of the first proponents of musique concrète in the UK. Her development of the Oramics system, a drawn sound making technique that involves inscribing waveforms and shapes directly onto 35mm film stock, also made her an innovative, if arcane, inventor of new musical technology. Daphne also gets the credit for being the first woman to design and construct a musical instrument, and the first to set up an independent personal electronic music studio. Oram was born to James and Ida Oram on 31 December 1925 in Wiltshire, England. She was taught music at an early age, starting with piano and organ before moving on to composition. Her father was a coal merchants manager, but was also an amateur archaeologist, and during the 1950s was president of the Wiltshire Archaeological Society. Here childhood home was within 10 miles of the stone circle of Averbury and 20 miles from Stonehenge. Her mother was an amateur artist. It seems that her parents interest in history and the arts lent itself to Daphne’s blossoming in the field of music and technology. At the age of seventeen the young Daphne was offered a place at the Royal College of Music but chose instead to take on a Junior Studio Engineer position at the BBC. She worked in part behind the scenes during live concerts at Albert Hall to ‘shadow’ the musicians, being ready to play a pre-recorded version of the music for broadcast in the event the radio was disrupted by the enemy actions of the Germans –not an unlikely fear just a year after the Blitz. Graham Wrench was just a lad at the time but got to know Daphne through his father who was a musician in the London Symphony Orchestra. Many years he worked with Daphne as an engineer on her Oramics system. He said of her work for the BBC at the time, "Daphne's job involved more than just setting the levels. She had a stack of records, and the printed scores of whatever pieces the orchestra was due to play. If anything went wrong in the auditorium she was expected to switch over seamlessly from the live orchestra to exactly the right part of the record!” Her other duties included the creation of sound effects for radio shows as well as keeping the broadcast levels of sound balanced and mixed. It was during this time period that she started to become aware of new developments in synthesized sound and started to make her own experiments with tape recorders late into the night, staying to work in the BBC studios long after her co-workers and colleagues had popped off to the pub or gone home for the evening. Cutting, splicing, playing backwards, looping, speeding up and slowing down, were all tape techniques she learned and became expert at. In the 1940’s she also composed an orchestral work that is now considered by some to be the first electro-acoustic composition. The piece was titled Still Point and involved the use of turntables, a double orchestra, and five microphones. The BBC rejected the piece from their programming schedule and it remained unheard for seventy years. It was resurrected by Shiva Feshareki who performed it with the London Contemporary Orchestra for the first time on June 24, 2016. A revised version was performed again by Fesharek and the LCO alongside James Bulley following Oram’s composition notes. We Also Have Sound-Houses Despite the rejection of her innovative score the BBC promoted her to become a music studio manager in the 1950s. It was around this time she travelled to RTF studios in Paris where Pierre Schaeffer had been hard at work in his development of musique concrète. Daphne began a crusade for the creation of a studio at the BBC dedicated to the creation of electronic and musique concrete for use in radio and television programs. She demonstrated her vision of what this music could be when she was commissioned to compose music for the play Amphitryon 38 in 1957, producing the BBC’s first entirely electronic score. It was made using a sine wave oscillator, self-designed filters, and a tape recorder. The production and piece were a success and these led to further commissions for electronic music. Fellow work colleague and electronic musician Desmond Briscoe also started to receive commissions for a number of other productions. One of the most significant was a request for electronic music to accompany Samuel Beckett’s All that Fall, which also was produced in 1957. The demand for electronic music was there, and the BBC finally gave in, giving Oram and Briscoe the go-ahead, and the budget, to establish the BBC Radiophonic Workshop. The focus of the Workshop was to provide sound effects and theme music for all of the corporation's output, including the science fiction serial Quatermass and the Pit (1958–59) and "Major Bloodnok's Stomach" for the radio comedy series The Goon Show. One of Daphne’s guiding stars at the workshop came from a passage in the unfinished utopian and proto-science fiction novel The New Atlantis penned by Sir Francis Bacon in . The novel depicts the crew of a European ship lost at sea somewhere in the Pacific west of Peru. Eventually the reach a mythical island called Bensalem. There isn’t much plot in the book, but the set up allowed Bacon to reveal his vision of an age of religious tolerance, scientific inquiry, and technological progress. In the New Antlantis Solomon’s House is a state-sponsored scientific institution that teases out the secrets of nature and investigates all phenomena, including music and acoustics. His book went on to form the basis for the establishment of the Royal Society. Daphne found one passage in the book to be both prophetic, as well as something of a mission statement. She posted the following passage from the book on the door of the Radiophonic Workshop: “We have also sound-houses, where we practice and demonstrate all sounds and their generation. We have harmonies, which you have not, of quarter-sounds and lesser slides of sounds. Divers instruments of music likewise to you unknown, some sweeter than any you have, together with bells and rings that are dainty and sweet. We represent small sounds as great and deep, likewise great sounds extenuate and sharp; we make divers tremblings and warblings of sounds, which in their original are entire. We represent and imitate all articulate sounds and letters, and the voices and notes of beasts and birds. We have certain helps which set to the ear do further the hearing greatly. We also have divers strange and artificial echoes, reflecting the voice many times, and as it were tossing it, and some that give back the voice louder than it came, some shriller and some deeper; yea, some rendering the voice differing in the letters or articulate sound from that they receive. We have also means to convey sounds in trunks and pipes, in strange lines and distances.” Yet even before a year was out her own ambition for the sound-house she had worked so hard to establish, came at loggerheads with the station executives. The inciting incident seemed to be her attendance at the Brussels World’s Fair and the Journées Internationales de Musique Expérimentale exhibition she was sent to attend. It was there where she heard Edgard Varèse demonstration of his ground breaking Poème électronique. And she heard other electronic music that was pushing the boundaries of the possible further. This exalting experience created a deep dissatisfaction in her when she returned to work and the music department refused to put electronic music at the forefront of their activities and agenda. The realm of the possible had smacked up against the wall of the permissible. So Daphne resigned from the workshop with the hope of establishing her own studio. In the hindsight of an outsider it seems this move may not have been the most strategic. Yet it did give her the freedom to develop her own electronic music instrument, Oramics, ill-fated as it was on a practical level. Oramics
Immediately after leaving the BBC in 1959, Oram began setting up her Oramics Studios for Electronic Composition in Tower Folly, in a former oasthouse (a building designed for drying hops prior to brewing) near Wrotham, Kent. The technique she created there involved the innovative use of 35mm film stock. Shapes drawn or etched onto the film strips could be read by photo-electric cells and transformed into sounds. According to Oram, "Every nuance, every subtlety of phrasing, every tone gradation or pitch inflection must be possible just by a change in the written form." While innovative, the Oramics technique was also expensive and Daphne met the financial pressure of having her own studio by opening it up and working as a commercial composer. Being director of the studio gave her complete control and freedom to experiment, but it also meant dealing with the stress of making economically viable. For the first few years she made music for commercial films, sound installations and exhibits as well as material for television and radio. She made the electronic sounds featured in Jack Clayton’s 1961 psychological horror film The Innocents. She also collaborated with opera singers created material for concert works. These pressures eased in 1962 when she was given a grant of £3,550 (equivalent to £76,000 in today’s money). She was able to put more effort into building her drawn sound instrument. In 1965 she reconnected with Graham Wrench, a few years after she had bumped into him at the IBC recording studio where she had brought in some tape loops for a commercial. She was in need of an engineer and technician and asked Wrench if he wanted the job, so he drove down with his wife to check things out. Graham said of the visit, “on a board covering a billiard table in an adjoining reception room was displayed the electronics for Oramics. There wasn't very much of it! She had an oscilloscope and an oscillator that were both unusable, and a few other bits and pieces — some old GPO relays, I remember. Daphne didn't seem to be very technical, but she explained that she wanted to build a new system for making electronic music: one that allowed the musician to become much more involved in the production of the sound. She knew about optical recording, as used for film projectors, and she wanted to be able to control her system by drawing directly onto strips of film. Daphne admitted the project had been started some years before, but no progress had been made in the last 12 months. I said I knew how to make it work, so she took me on. I left my job with the Medical Research Council and started as soon as I could.” Graham was able to help her build the system up, drawing on his experience as a radar specialist in the RAF. He started by designing a time-base for the waveform generator. To do this he needed to make his own photo-transistors which were too expensive to buy commercially, by scraping off the paint of regular transistors, still pricey at the time as they had only been on the market a few years. The waveform-generator itself worked in the same fashion as an oscilloscope, but in reverse. It used a “six‑inch CRT [Cathode Ray Tube] mounted inside a lightproof box, with a 5x4‑inch photographic slide carrier fixed to the front of its screen. Mounted some distance in front of the CRT was a photomultiplier tube, arranged so as to detect light from anywhere on the screen. In the slide carrier was placed a transparency with an image of the required waveform; but this was not, as generally believed, simply a line drawing. The shape was filled in with solid black below the line and was left transparent above it, looking rather like the silhouette of a mountain range. Across the bottom of the CRT screen a dot of light was made to trace a horizontal line by scanning repeatedly from left to right along the 'X' axis. If the beam happened to be obscured by the lower, opaque part of the drawn waveform, no light would be detected by the photomultiplier tube. If so, the beam was told to move higher up the screen until the photomultiplier could see it. In this way the moving dot of light was forced to follow exactly whatever profile was drawn on the transparency. Altering the voltage of the CRT's Y‑axis deflection plates controlled the up and down movement of the dot. The charge on these plates is very high — usually several hundred Volts. But if fluctuations in the Y‑axis voltage were scaled down to within just a Volt or so, it could be connected to an audio amplifier… And that is exactly how the Oramics machine generated its sound: the audio output was tapped off the Y-axis voltage of the CRT. Whatever shape was placed in front of the screen became just one cycle of a repeating waveform. The speed at which the dot of light travelled across the screen on the 'X' axis was controlled by the time‑base unit, and was adjustable over a very large range so that the speed of the scan dictated the frequency of the sound it produced. If the beam travelled across the screen 440 times every second, it would scan the drawn waveform 440 times, producing a pitch of 440 Hertz, or the 'Concert A' above middle C.” He had also created an analog digital system by dividing the film into four usable tracks, “each of which can be set to on or off by putting a spot of paint in the appropriate place on the film, to be read by a photo‑cell. Remember how the binary system works? Well, if each strip of film has four tracks, we can use them as four places of binary digits. The track on the lower edge of the film does nought or one; the next one up does nought and two; the next does nought and four; the top‑most track does nought and two again: hence, weighted binary. So it's very simple to 'program' each strip of film with a number — it only has to be between nought and nine — just by painting up to four spots on the film. "Imagine that you've put a waveform picture in the scanner. If you'd like that sound to play at a frequency of 440 Hertz, then you go first to the strip of film that programs the hundreds of cycles per second. There are four available film‑strips of four tracks each, so just put a spot on the third track of the third film from the bottom (the hundreds). Then go to the film strip that programs the tens of cycles per second, and do the same. That's it — you've programmed 440 Hertz! When the film is run, those two spots of paint will be read by the photo‑cells, which in turn, control latching relays that switch in banks of resistors and make the time‑base run at whatever frequency. So you see, it is digitally controlled — but not how you'd imagine it! I know it seems a strange way to play a tune, but with a bit of practice it becomes quite intuitive.” He also developed the means to control volume with the system by means of an optical system where a light is faded up and down to change the audio level by means of a photo‑resistor. He also figured out how to create tremolo and vibrato. The system had become vary flexible in the sonics it was able to produce. Being able to draw a sound gave amazing freedom in creating rich envelopes of music. Sadly Graham, who had done so much to develop the system, was let go by Daphne following an illness that some believed had been a brain hemorrhage, but which was never fully diagnosed. Graham believed it was a nervous breakdown caused by her long working hours and perhaps the 5hz subharmonic frequencies caused by the Oramics machine, which he later fixed by adding a high pass filter to remove the subsonics. The reason for his release was never made clear. It was a real shame because Graham had done a lot of work to get the system as she had envisioned it in place. Other engineers and technicians came in and copied what he had done to expand the Oramics system while Daphne continued to compose, research, and think about the implications of electronic music from a philosophical perspective. She turned her attention to the subtle nuances of sound that composers using traditional instruments had never been able to control before. She applied this research to the study of perception itself, and how the human ear influences the way the brain apprehends the world. Oramics came to encompass a study of vibrational phenomena, and she divided her system into two distinct parts the commercial and the mystical. In her detailed notebooks Daphne defined Oramics as "the study of sound and its relationship to life." Over the decades Daphne had lectured on electronic music and studio techniques. Throughout her career, Oram lectured on electronic music and studio techniques. In the early seventies she was commissioned to write a book on electronic music. She didn’t want it become a how-to book, so instead took a philosophical and meditative approach to the subject. An Individual Note of Music, Sound and Electronics was published in 1972 and reissued in 2016. Later in the 1970s Oram began a second book, which never saw print but survives as a manuscript. Titled, The Sound of the Past - A Resonating Speculation, in this work the influence of her fathers interest in archaeology can be seen. In it she speculates and muses on the subject of archaeological acoustics and proposes a theory, backed by research, suggesting that Neolithic chambered mounds and ancient sites like Stonehenge and the Great Pyramid in Egypt were used as resonators, and could be used to amplify sound. Her research suggested that ancient peoples, through their knowledge of sound and acoustics, may have been able to use these places for long distance communication. By the time the 1980s rolled around she was engaged by the Acorn Archimedes computer company to work on the development of a software version of Oramics for their machine, receiving a grant from the Ralph Vaughan Williams Trust. She had wished to continue the mystical side of her sound research, but the continuing financial struggles for such a project left that dream mostly unfulfilled. In the 1990’s Oram suffered from two strokes that eventually led her away from her work and into a nursing home. She died in 2003. In her book Daphne wrote, "We will be entering a strange world where composers will be mingling with capacitors, computers will be controlling crotchets and, maybe, memory, music and magnetism will lead us towards metaphysics." It is true we are living in that strange world where computers control and Internet of Things, and smart fabrics are weaved by machines. It remains to be seen if the philosophers and spiritually minded musicians of today will marry their love of all things electrical and electromagnetic with the long memory necessary for us to understand the fundamental nature of reality. --SOURCES An archive of her recordings can be listened to free here: http://www.ubu.com/sound/oram.html A contemporary reinterpretation of her music from the BBC archives can be found here: https://ecstaticrecordings.bandcamp.com/album/sound-houses Sources: http://www.ubu.com/historical/oram/index.html https://publicdomainreview.org/essay/cat-pianos-sound-houses-and-other-imaginary-musical-instruments https://www.theguardian.com/music/2008/aug/01/daphne.oram.remembered https://www.soundonsound.com/people/graham-wrench-story-daphne-orams-optical-synthesizer https://frieze.com/article/music-15 https://en.wikipedia.org/wiki/Daphne_Oram
0 Comments
IS THERE ANY ESCAPE FROM NOISE? In our machine dominated age there is hardly any escape from noise. Even in the most remote wilderness outpost planes will fly overhead to disrupt the sound of the wind in the trees and the birds in the wind. In the city it is so much part of the background we have to tune in to the noise in order to notice it because we’ve become adept at tuning it out. Roaring motors, the incessant hum of the computer fan, the refrigerator coolant, metal grinding at the light industrial factory down the street, the roar of traffic on I-75, the beep of a truck backing up, these and many other noises are all part of our daily soundscape. Throughout human history musicians have sought to mimic the sounds around them, the gentle drone of the tanpura, a stringed instrument that accompanies sitar, flute, voice and other instruments in classical Indian music, was said to mimic the gentle murmur of the rivers and streams. Should it be a surprise then, that in the nineteenth and twentieth century musicians and composers started to mimic the sounds of the machines around them? In bluegrass and jazz there are a whole slew of songs that copied the entrancing rhythms of the train. As more and more machines filled up the cities is at any wonder that the beginnings of a new genre of music –noise music- started to emerge? Is it any wonder, that as acoustic and sound technology progressed, our music making practices also came to be dominated by machines. THE ART OF NOISES And just what is music anyway? There are many definitions from across the span of time and human culture. Each definition has been made to fit the type, style and particular practice or praxis of music. In his 1913 manifesto The Art of Noises the Italian Futurist thinker Luigi Russolo argues that the human ear has become accustomed to the speed, energy, and noise of the urban industrial soundscape. In reaction to those new conditions he thought there should be a new approach to composition and musical instrumentation. He traced the history of Western music back to Greek musical theory which was based on the mathematical tetrachord of Pythagoras. This did not allow for harmony. This changed during the middle-ages first with the invention of plainchant in Christian monastic communities. Plainchant employs the modal system and this is used to work out the relative pitches of each line on the staff, and was the first revival of musical notation after knowledge of the ancient Greek system was lost. In the late 9th century, plainsong began to evolve into organum, which led to the development of polyphony. Until then the chord did not exist, as such. Russolo thought that the chord was the "complete sound." He noted that in history chords developed slowly over time, first moving from the "consonant triad to the consistent and complicated dissonances that characterize contemporary music." He pointed out that early music tried to create sounds that were sweet and pure, and then it evolved to become more and more complex. By the time of Schoenberg and the twelve tone revolution of serial music musicians sought to create new and more dissonant chords. These dissonant chords brought music ever closer to his idea of "noise-sound." With the relative quiet of nature and pre-industrial cities disturbed Russolo thought a new sonic palette was required. He proposed that electronics and other technology would allow futurist musicians to substitute for the limited variety of timbres available in the traditional orchestra. His view was that we must "break out of this limited circle of sound and conquer the infinite variety of noise-sounds." This would be done with new technology that would allow us to manipulate noises in ways that never could have been done with earlier instruments. In that, he was quite correct. Russolo wasn’t the only one thinking of the aesthetics of noise, or seeking new definitions of music. French Modernist composer Edgar Varèse said that “music is organized sound.” It was a statement he used as a guidepost for his aesthetic vision of "sound as living matter" and of "musical space as open rather than bounded". Varèse thought that "to stubbornly conditioned ears, anything new in music has always been called noise", and he posed the question, "what is music but organized noises?" An open view of music allows new elements to come into the development of musical traditions, where a bound view would try to keep out those things out that did not fit the preexisting definition. Out of this current of noise music initiated in part by Russolo and Varese a new class of musician would emerge, the musician of sounds. MUSICIAN OF SOUNDS Fellow Frenchmen Pierre Schaeffer developed his theory and practice of musique concrète during the 1930s and ‘40s and saw it spread to people such as Karlheinz Stockhausen, the founders of the BBC Radiophonic Workshop, F.C. Judd and many others in the 50’s. Musique concrète was a practical application of Russolo’s idea of “noise-sound” and exploration of expanded timbres possible through then new studio techniques. It was also a way of making music according to the “organized sound” definition and was distinct from previous methods by being the first type of music completely dependent on recording and broadcast studios. In musique concrète sounds are sampled and modified through the application of audio effects and tape manipulation techniques, then reassembled into a form of montage or collage. It can feature any sounds derived from any recordings of musical instruments, the human voice, field recordings of the natural and man-made environment or sounds created in the studio. Schaeffer was an experimental audio researcher who combined his work in the field of radio communications with a love for electro-acoustics. Because Schaeffer was the first to use and develop these studio music making methods he is considered a pioneer of electronic music, and one of the most influential musicians of the 20th century. These recording and sampling techniques which he was the first to use and practice are now part of the standard operating procedures used by nearly all record production companies around the world. Schaeffer’s efforts and influence in this area earned him the title “Musician of Sounds.” Schaeffer, born in 1910, had a wide variety of interests throughout his eighty-five years on this planet. He worked variously across the fields of composing, writing, broadcasting, engineering, and as a musicologist and acoustician. His work was innovative in science and art. It was after World War II that he developed musique concrète, all while continuing to write for essays, short novels, biographies and pieces for the radio. Much of his writing was geared towards the philosophy and theory of music, which he then later demonstrated in his compositions. It is interesting to think of the influences on him as a person. Both his parents were musicians, his father a violinist, and his mother a singer, but they discouraged him from pursuing a career in music and instead pushed him into engineering. He studied at the the École Polytechnique where he received a diploma in radio broadcasting. He brought the perspective and approach of an engineer with his inborn musicality to bear on his various activities. Schaeffer got his first telecommunications gig in 1934 is Strasbourg. The next year he got married and the couple had their first child before moving to Paris where he began work at Radiodiffusion Française (now called Radiodiffusion-Télévision Française, RTF). As he worked in broadcasting he started to drift away from his initial interests in telecommunications towards music. When these two sides met he really began to excel. After convincing the management at the radio station of the alternate possibilities inherent in the audio and broadcast equipment, as well as the possibility of using records and phonographs as a means for making new music he started to experiment. He would records sounds to phonographs and speed them up, slow them down, play them backwards and run them through other audio processing devices, and mixing sounds together. While all this is just par for the course in today’s studios, it was the bleeding edge of innovation at the time. With these mastered he started to work with people he met via the RTF. All this experimentation had as a natural outgrowth a style that leant itself to the avant-garde of the day. The sounds he produced challenged the way music had been thought of and heard. With the use of his own and his colleagues engineering acumen new electronic instruments were made to expand on the initial processes in the audio lab, which eventually became formalized as the Club d’Essai, or Test Club. CLUB D’ESSAI In 1942 Pierre founded the Studio d'Essai, later dubbed the Club d'Essai at RTF. The Club was active in the French resistance during World War II, later to become a center of musical activity. It started as an outgrowth of Schaeffer’s radiophonic explorations, but with a focus on being radio active in the Resistance on French radio. It was responsible for the first broadcasts to liberated Paris in August 1944. He was joined in the leadership of the Club by Jacques Copeau, the theatre director, producer, actor, and dramatist. It was at the Club where many of Schaeffer’s ideas were put to the test. After the war Schaeffer had written a paper that discussed questions about how sound recording creates a transformations in the perception of time, due to the ability to slow down and speed up sounds. The essay showed his grasp of sound manipulation techniques which were also demonstrated in his compositions. In 1948 Schaeffer initiated a formal “research in to noises” at the Club d'Essai and on October 5th of that year presented the results of his experimentation at a concert given in Paris. Five works for phonograph (known collectively as Cinq études de bruits—Five Studies of Noises) including Etude violette (Study in Purple) and Etude aux chemins de fer (Study of the Railroads), were presented. This was the first flowering of the musique concrete style, and from the Club d’Essai another research group was born. GRM: Groupe de Recherche de Musique Concrète In 1949 another key figure in the development of Musique Concrète stepped onto the stage. By the time Pierre Henry met Pierre Schaeffer via Club d’Essai the twenty-one year percussionist-composer old had already been experimenting with sounds produced by various objects for six years. He was obsessed with the idea of integrating noise into music, and had already studied with the likes of Olivier Messiaen, Nadia Boulanger, and Félix Passerone at the Paris Conservatoire from 1938 to 1948. For the next nine years he worked at the Club d'Essai studio at RTF. In 1950 he collaborated with Schaeffer on the piece Symphonie pour un homme seul. Two years later he scored the first musique concrète to appear in a commercial film, Astrologie ou le miroir de la vie. Henry remained a very active composer and scored for a number of other films and ballets. Together the two Pierres were quite a pair and founded the Groupe de Recherche de Musique Concrète (GRMC) in 1951. This gave Schaeffer a new studio, which included a tape recorder. This was a significant development for him as he previously only worked with phonographs and turntables to produce music. This sped up the work process, and also added a new dimension with the ability to cut up and splice tape in new arrangements, something not possible on a phonograph. Schaeffer is generally acknowledged as being the first composer to make music using magnetic tape. Eventually Schaeffer had enough experimentation and material under his belt to publish À la Recherche d'une Musique Concrète ("In Search of a Concrete Music") in 1952, which was a summation of his working methods up to that point. Schaeffer remained active in other aspects of music and radio throughout the ‘50s. In 1954 he co-founded Ocora, a music label and facility for training broadcast technicians. Ocora stood for the “Office de Coopération Radiophonique”. The purpose of the label was to preserve via recordings, rural soundscapes in Africa. Doing this kind of work also put Schaeffer at the forefront of field recording work, and in the preservation of traditional music. The training side of the operation helped get people trained to work with the African national broadcasting services. His last electronic noise etude was realized in 1959, the "Study of Objects" (Etudes aux Objets). For Pierre Henry’s part, two years after leaving the RTF, he founded with Jean Baronnet the first private electronic studio in France, the Apsone-Cabasse Studio. Later Henry made a tribute to composing his Écho d'Orphée. A CONCRETE LEGACY
usique remains concrete. Schaeffer had known of the “noise orchestras” of his predecessor Luigi Russolo, but took the concept of noise music and developed it further by making it clear that any and all sounds had a part to play in the vocabulary of music. He created the toolkit later experimenters took as a starting point. He was the original sampler. In all his work he emphasized the role of play, or jeu, in making music. His ide of jeu in music came from the French verb jouer. It shares the same dual meaning as the English word play. To play is to have two things at once: to make pleasing sounds or songs on a musical instrument, and to engage with things as way of enjoyment and recreation. Taking sounds and manipulating them, seeing what certain processes will do to them, is at the heart of discover and play inside the radiophonic laboratory. The ability to play opens up the mind to new possibilities. *** This article originally appeared in the April 2020 edition of the Q-Fiver. If you enjoyed this article please consider reading the rest of the Radiophonic Laboratory series. |
Justin Patrick MooreHusband. Father/Grandfather. Writer. Green wizard. Ham radio operator (KE8COY). Electronic musician. Library cataloger. Archives
December 2022
Categories
All
|